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REGRESSION COMPONENT ANALYSIS

By PeTEr H. ScHONEMANN and James H. STEIGERT
Purdue University

Regression component decompositions (RCD) are defined as a special class of
component decompositions where the pattern contains the regression weights
for predicting the observed variables from the latent variables. Compared to factor
analysis, RCD has a broader range of applicability, greater ease and simplicity of
computation, and a more logical and straightforward theory. The usual distinction
between factor analysis as a falsifiable model, and component analysis as a tautology,
is shown to be misleading, since a special case of regression component decompo-
sition can be defined which is not only falsifiable, but empirically indistinguishable
from the factor model.

INTRODUCTION

In 1904, Charles Spearman proposed factor analysis as a falsifiable mathematical
model for the description of intelligence tests. He adduced a fair amount of
empirical evidence in support of his “T'wo-factor Theory’: “The average inter-
columnar correlation from the tables of fourteen different investigators, summar-
izing thirty years of psychological researches and representing a great wealth of
test material, was unity, as expected by the unifocal hypothesis of a general
factor. It seemed to be the most striking quantitative fact in the history of
psychology’ (Dodd, 1928, p. 214).

After a period of optimism and refinement of the methodology, a number of
theoretical problems emerged which seemed to shed doubts on the stringency of
Spearman’s factor model. Thomson (1919) argued that other mathematical
theories could be used to explain Spearman’s data. In 1928, E. B. Wilson showed
that the latent variables of the model, the factors, are not uniquely defined by the
factor model (‘factor indeterminacy’). In 1939 (Wilson & Worcester, 1939), he
also showed that sometimes the variance parameters of the model are not
identifiable (‘identifiability problem’).

During the 1940s, Thurstone, following a suggestion by Garnett (1919),
successfully popularized a multiple factor extension of Spearman’s theory.
Multiple factor analysis became widely accepted as one of the most promising
methodological advances of psychology. During this period most of the
theoretical problems of the factor model were ignored. Factor analysis gradually
lost its character as a2 model, and became more and more a tool for data reduction.
Some of the theoretical problems of the factor model were recently brought back
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into focus in a number of papers (Schénemann, 1971; Schonemann & Wang,
1972; Steiger & Schénemann, 1975) which finally succeeded in reopening these
outstanding questions. A very comprehensive and authoritative paper by
Guttman in 1955 had been virtually ignored, together with all previous work in
this area. In the empirical part of their 1972 paper, Schonemann & Wang
reanalyzed the data of 13 published factor analyses, employing the recently
perfected maximum likelihood algorithms for factor extraction, which make it
feasible to test the model statistically. They found (1) that the factor model
usually did not fit statistically for the small number of common factors which
appeared in the published accounts and (2) that some of the common factors
were usually poorly defined. Frequently, the correlation of a factor with a
minimally correlated equivalent factor was zero. As Guttman (1955) had
pointed out, this ‘raises the question what is being estimated in the first place;
instead of only one primary trait there are many widely different variables
associated with a given profile of factor loadings’. Finally, they found (3) that
both problems, factor indeterminacy and lack of identifiability, grew worse as
the number of factors was raised in an effort to improve the statistical fit.
Understandably, this study has provoked some controversy about the merits
of the factor model. One might expect some resistance against discarding factor
analysis, because, in spite of the theoretical difficulties of the underlying model,
the method has proven flexible and useful as a data reduction technique. In this
paper, we propose and discuss an alternative method for data reduction which
has many of the practical virtues of factor analysis, is equally flexible, but
computationally more efficient and free from its theoretical problems.

1. DEFINITIONS
The basic problem is the description of p given random variables y; in
7" = (Jp - ¥p) in terms of m<p random variables x; in & = (xy, ..., %), and p
residuals ¢; in & = (ey, ..., ;). In the factor analysis model,

= A% £5 4 ¥, 1.1
7

the m ‘common factors’ in ¢ and the p ‘unique factors’ in & are defined implicitly
in terms of their variance and covariance behavior, viz.

S W A
var( s*).—[ p U2] (1.2)

rank [var( i: )] =p+m. (1.2a)

As is well known (e.g. Wilson, 1928; Guttman, 1955; Schénemann, 1971;
Schénemann & Wang, 1972), this implicit definition of the factors of the factor
model precludes the possibility of expressing them as linear combinations of the
given random variables y;. As a consequence, one is left with an indeterminacy

with
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at the random variable level which is still the subject of some controversy. This
indeterminacy has led to the questionable practice of ‘estimating’ factors by
various methods. The notion of ‘estimating’ a parameter that is not uniquely
defined is somewhat unconventional. Advocates of such ‘estimation’ have yet
to provide a clear rationale for their efforts.

To avoid these and other difficulties, we discard the problematic definition
(1.2), and replace it by a definition of ‘components’ as linear combinations of
the observed random variables, but retaining the decomposition (1.1). We thus
propose:

Definition 1. m random variables x; in & = (xy,...,%,) will be called
‘components’ of the p > m given random variables y; in g = (3, ...,¥,,) if they can
be written as linear combinations of the given y;, i.e. iff there exists a matrix of
‘defining weights’ B = (b;;) such that

£ =B". (1.3)

For convenience we assume that B is so chosen that the components x; are
linearly independent, i.e.

var(£) = B'SB = ¢ (1.3a)

is positive definite. Once we have decided on a B in (1.3), £ will be uniquely
defined.

This is a rather broad definition. It covers ‘principal components’, ‘canonical
variates’, ‘linear discriminant functions’, ‘(partial) images’, ‘anti-images’, as well
as any rotations thereof as special cases. It also covers the various kinds of
‘factor score estimates’. These ‘estimates’ are of practical use primarily because
they are expressed as linear combinations of the original variables, and thus
uniquely defined in contrast to the indeterminate factors.

In statistical applications, the representation of the original variables in terms
of the ‘components’ is often not the major goal. For example, linear discriminant
functions are linear functions of the observed variables. They are defined for
optimally predicting group membership and fit the definition of ‘components’.
If there are three groups, there will be at most two linear discriminant functions.
Generally there is no interest in whether these components could be used to
‘represent’ adequately the given random variables. Such representation is not
their purpose.

In psychometrics, and especially in factor analysis, on the other hand, such
representation of random variables is often the major goal. This distinction in
perspective should be maintained. Here, our main interest is in ‘component
decompositions’, i.e. the description of a given random vector 7 in terms of
components. We therefore propose:

Definition 2. A representation of 4 in terms of m components £ will be called a
‘component decomposition’ (of 7) iff 5 is written

n=Aé+te="H+e¢
— AB'n+(I—AB')y (1.4)

12
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for some p xm ‘pattern’ of constants A = (a;;) of full column rank m. The p
random variables ¢; in &' = (ey, ..., &,) will be called ‘residuals’ and the p random
variables in 4 = A¢ ‘predicted parts’.

This way of representing 7 in terms of ¢ is analogous to the factor model (1.1)
except that £, ¢ are linear functions of the observed variables, whereas the factors
&% ¢* are not. An example of such a component decomposition is Guttman’s
Image Analysis. The predicted parts are the (partial) images and the residuals
the anti-images. Sometimes principal components are used to represent 7 as in
(1.4), where the predicted parts are the least squares estimates of the observed y;
as predicted from the m largest principal components, and the residuals the
estimates as predicted from the remaining p—m principal components.

Without a further stipulation, definitions 1 and 2 are too broad to be of much
use: given B which defines £ we can use any full column rank matrix 4 to
obtain a component decomposition as in definition 2, because ¢, in each case,
can simply be redefined as the difference n—A4¢. This means that the defining
weights B alone do not suffice to specify a component decomposition uniquely.
We therefore add

Definition 3. A component decomposition will be called a ‘regression com-
ponent decomposition’ (RCD) iff the rows of the pattern 4 contain the regression
weights for predicting the observed y; from the components in §, i.e. iff 4 is of
the form

A = cov(n, §)var~1(§) (1.5)
= ZBJL. (1.5a)

An A satisfying (1.5) and (1.52) will be called a ‘regression pattern’.

This definition retrieves some of the characteristics of the factor model, since
the ‘factor pattern’ A* in (1.1) is also the regression pattern for predicting the
observed y; from the implied common factors in £*, as is well known.

A comparison of (1.1) with (1.4) shows that factor analysis and RCD share
the same basic structural equation. Moreover, (1.5) also applies to both. The
major differences between RCD and factor analysis result from our replacement
of the implicit definition of £*, &* of the factor model in (1.2) with the explicit
definition of £, ¢ in (1.3).

2. SOME SIMPLE CONSEQUENCES, AND SEVERAL EQUIVALENT CHARACTERIZATIONS

We list a number of straightforward consequences of the definitions (1.1)-
(1.3) for future reference. Not all these consequences are new, and many are
sufficiently straightforward that we can omit detailed proof. In some cases,
we can also show sufficiency. Hence, a number of equivalent characterizations
of the regression component decompositions defined by (1.3)(1.5) can be
obtained. In particular, the decomposition (1.3)~(1.5) will be shown to be
equivalent to the decomposition implied by Guttman’s (1952) ‘Multiple Group
Method’.
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An immediate but important consequence of (1.3)~(1.5) is
cov(é, &) =¢, for all Bin (1.3). (2.1)

This result, well known from standard regression algebra, follows immediately
if we replace 4 in cov(é, &) = cov[By, (I~ AB")y] = B’ —B'ZBA’ by its
definition in (1.5).

In contrast to statistical treatments of component analysis, factor analysis
begins with the extraction of the pattern A, since there is no B. It is therefore
of interest to know how to express the matrix of defining weights B in terms of
the regression pattern 4. One finds

B=X"14(A"214)7, forall 4in (1.4), (1.5). (2.2)
Proof. From (1.5), A’272 4 =y 1B’ (X1 EBJY, or
$=B'ZB = (A'314)7,

which can then be used to solve (1.5) for B in terms of A.

This means that one can use any full column rank matrix 4, e.g. one obtained
by any of the conventional factor extraction methods, to define a set of components
for which this A4 is the regression pattern. If desired, one can replace the factor
model (1. 1) (1.2) by a regression component decomposition which then has all
the propertles laid out here. It will later be shown that the so-called ‘regression
estimates’ £* of factor analysis do not have A* in (1.1) as a regression pattern,
since 4* is the regression pattern of £*, not £*. Therefore (2.1) is violated for £*,
although it is part of the definition of £* in (1.2). Equation (2.2) implies that other
factor ‘estimates’ can be computed which at least partially satisfy the stipulation
of the factor model, if such are desired.

There are a number of other properties which regression component decompo-
sitions have in common with factor analysis. For example, (1.4), (2.1) imply
at once

var (&) = X — AgA’, (2.3)
where 4 and B in (1.3) jointly satisfy
B'4=1 (2.3a)

Proof. Using ¢ = (I—-AB’) from (1.3) and (1.4) evaluate var (g). Then apply
(1.5). Equation (2.3a) follows from (2.2), and thus also from (1.3) to (1.5).

In conventional texts on factor analysis, the above simple result, rewritten as
X = A*YpA* +var (¢¥), is usually called the ‘fundamental theorem of factor
analysis’. This prominence seems to us undeserved, as it follows as a trivial
consequence of the uncorrelatedness condition (1.2). The full rank condition
(1.2a) would seem to be more ‘fundamental’ since it implies the indeterminacy
of the factors.

Upon straightforward evaluation, one further finds

cov(n, &) = var(g) for all B, (2.4)
and

cov(n, AE) = var (4€) forall 4 (2.5)



180 SCHONEMANN AND STEIGER {Br. . math. statist. Psychol.

in exact analogy to the factor case, essentially as a direct consequence of the
uncorrelatedness of ¢ with ¢ in (2.1). As anticipated, the overlap in definitions
of the factor model and RCD yields some similar properties at the variance-—
covariance level. In contrast, the rank property of the residual matrix, var(e)
serves to differentiate between factor analysis and RCD. In factor analysis,
var (¢*) has full rank p by definition (1.2). In regression components analysis,
it has deficient rank p —m, as a consequence of the explicit definition of £* in (1.3).
This is most easily seen upon rewriting this matrix in (2.3) in terms of B, using

(1.5):
var(¢) = £— ZB(B'=B)'B'E. (2.6)

This form of the residual variance-covariance matrix establishes the close
connection of RCD with Guttman’s (1952) ‘Multiple Group Method’. Guttman
showed that this matrix difference has rank p—m if = had rank p and B full
column rank m. He thus provided, to our knowledge for the first time, an
explicit justification why the then popular extraction algorithms, such as the
centroid method, method of triangular factoring, and principal axes method,
‘work’ (i.e. indeed bring about the desired rank reduction of the ‘reduced’
variance—covariance matrix £ — U?). Guttman further showed that a repetition
of the same process on var(¢), instead of %, under choice of a second weight
matrix B*, say, leads to a second set of components which will be uncorrelated
with the first. In the limiting case, when each B has exactly one column, one
thus obtains a set of mutually uncorrelated components. Guttman’s perspective
at the time was somewhat different from ours here: he discussed these develop-
ments in the context of factor analysis, where the decomposition is applied,
implicitly, to the ‘common parts’ #* = A* &% of the factor model. These common
parts are not only unobserved, but also indeterminate, because &% is. In contrast,
our present focus is on component analysis, where the decomposition is applied
to manifest, and thus uniquely defined, variables—precisely because we do not
wish to become entangled with indeterminate random variables.

In passing, we note that it is the full rank condition (1.22) of the factor model,
not the diagonality condition var (&*) = U?, diagonal, positive definite, which
is at the heart of the factor indeterminacy problem. One is left with the same
indeterminacy if the unique factors are correlated, as long as their variance—
covariance matrix is nonsingular.

Finally, we note a connection between these developments and the theory of
projectors. We can state in general that

# = A¢ = Py, for some P which satisfies (2.7)
PXB =%B, forall B, (2.7a)

and, alternatively,
¢ = Or, for some Q which satisfies (2.8)

OSB = ¢, forall B. (2.82)
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To prove these results, we note that equation (1.4a) can be rewritten

1= Pyp+(I—-P)n = Pn+Qn, (2.9a)
where
P =AB’ (2.9b)
and
O=I1-A4B'". (2.9¢)
Now (2.2) implies
A'B=1. (2.10)
Hence,
P=P?=A4B', Q=({I-P)=0" (2.11)
That is, P and Q are (in general oblique) projectors. P can be written
P=2%ZB(B'EZB) B = A(A'ZA)1 A’ X, (2.12)
so that
PZ =2%P, (2.13)
and

PSB=3B, OSB-=4¢,
PA=4, QA=¢.

P is an oblique projector for the column space of B, or, equivalently, for the
column space of A.

We now pause to state a more general conclusion.

Theorem 1. 'The triples [(1.3),(1.4),(1.5)] and [(1.3),(1.4),2.k)] k= 1,2,...,8
are nine equivalent characterizations of regression component decompositions,
as defined.

Proof. See Appendix.

Theorem 1 shows that the formal structure of regression components analysis
can be derived from a number of different sets of premises. These different
premises provide different theoretical perspectives on the relation between factor
analysis and RCD, while still leading to the same result. Some of the character-
izations in Theorem 1 are useful in contrasting factor analysis with RCD. Those
involving B, for example, as well as those involving the projectors P or O, have
no analogue in factor analysis simply because there exists no B which could be
used to represent the factors £¥, &*,

Theorem 2. The factors of factor analysis are not components in the sense of
definition 1.

Proof. If they were, their joint variance—covariance matrix could be written

& B'n B .
Var< & ) B Var{ (I-AB') J - ( [-4B’ )‘“’( B ) (2.15)

for some B, which has rank » < p, since the rank of a product cannot exceed the
rank of any of the factors. However, this conflicts with the full rank assumption

(1.2a) of the factor model. Q.E.D.

(2.14)
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A major difference, then, between RCD and factor analysis is that in RCD ¢, ¢
can be defined uniquely in terms of B,7 whereas £* ¢* in the factor model
cannot be defined uniquely in terms of 7, 4,4, U?, since there is no B which
could be used to define them uniquely as linear combinations of 5. The represen-
tation in terms of projectors serves to distinguish between Guttman’s ‘images’
and the regression components defined by (1.3)~(1.5). Although Guttman’s
(partial) ‘images’ and ‘anti-images’ are components in the sense of definition 1,
an image is not a regression component because the weight matrices which
define A¢, £ are not idempotent.

Another distinction between regression components and the factors of factor
analysis is reflected in the matrix of partial covariances

b—pA' T A = var (€] n). (2.16)

This matrix is zero in regression component analysis. This is intuitively
reasonable, since we defined the components as linear combinations of the
observed variables. Partialling out the observed variables from the components
should then produce a residual variance—covariance matrix that is zero. In
contrast, this matrix is not zero in factor analysis. There itis used in the formulas
for constructing the indeterminate factors £*, with var (§*) = ¢*. These formulas,
developed for the single factor case by Piaggio (1931), and later extended to the
multiple factor case by Kestelman (1952) and Guttman (1955), state that for any
factor pattern A*, and a set of observed variables %, we can construct £*,&*

satisfying (1.1), (1.2) and (1.2a) as
& = ¥ A¥' I 19+ Ko, &* =U2Z19—Ko, (2.17)
where the matrix K is a Gram factor of var (£*|7) in (2.16), i.e. satisfies
KK' = var (&% |n) = * — ¥ A¥ Z1A* >, (2.18)
The vector of random variables o is subject only to the mild restrictions
var (o) = I,, cov(y,o)=¢. (2.19)

These restrictions leave a great deal of freedom for the choice of o, which is the
reason for the lack of determinacy of the implied variables ¥, e¥ of the factor
model. '

It is important to realize that this indeterminacy of &* in the factor model
differs from a simple lack of uniqueness which can be removed by suitable
choice of one of the parameters of the model. It is clear, for example, that
regardless of the factor indeterminacy, (1.1) implies that any nonsingular matrix
T can be interpolated to redefine both A%, £* so that 4** = A* T, frk = T-1g*
will fit the model if and only if 4%, ¢* do. This ‘rotational indeterminacy’ is
generally not considered to be a serious problem, because it can be removed by
simply selecting one of the parameters of the factor model, A%, in some optimal
way, e.g. by specifying that A* be of ‘simple structure’. The problem is that in
the factor model this choice still leaves £* indeterminate, i.e. infinitely many
assignments for £* exist which satisfy the model equally well for the same
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choice of A*. In RCD, this rotational indeterminacy also exists, but there a
choice of A4, e.g. one of simple structure, fixes ¢ since B is then uniquely deter-
mined by (2.2).

In passing, we note that this second uniqueness problem, the joint rotational
indeterminacy of 4, £, which exists in both cases, can be resolved in the RCD case
in two alternative ways. Either one can rotate the pattern A4 to simple structure,
or, alternatively, one can rotate the matrix of defining weights B to simple
structure. This second alternative does not exist in the factor case. Yet, it seems
to have at least as much intuitive appeal as the first: since one usually has some
knowledge of the nature of the observed tests y, in 7, it is not unreasonable to
seek components ¢ which are parsimoniously defined in terms of these observed
¥; and which then can be interpreted in terms of the known y;. In factor
analysis, where the second. alternative is not available, one usually reasons that
the observed y,; should be explained as parsimonious functions of the unobserved
and, hence, unknown x;* in £*. This reasoning loses some of its stringency once
it is realized that the x;* which are used to explain the manifest y; are in fact not
uniquely definable. Regrettably, this has usually not been realized in conventional
treatments of this rotational indeterminacy, which thus is also seen to be affected
directly by the long ignored factor indeterminacy issue.

The vanishing of var (£|7) in regression component analysis is both necessary
and sufficient for obtaining a Gramian matrix X — A$A’ of rank p—m:

Theorem 3. Given two Gramian positive definite matrices of full rank p and m
(< p) respectively and a full column rank matrix 4 of order p x m, the difference
X — Ay A’ is Gramian and of rank p—m iff y—4 A’ T A = ¢, i.e.

b= (A =14)1,
Proof. If A’ 51 A = i, then
S APA’ = 52444+ AWA' S AP) A’ = (I— ApA' E-)S(I—- 51 Ay A’)

is Gramian and of rank p —m, since P = [ — A4’ X1 = P2 and has rank p —m.
Conversely, if X — ApA’ = MM’ for some p x (p—m) full column rank M, then

z=qamn( %)

where #* is a symmetric Gram factor such that iyt =; b =¥, Let
VD2V’ = X be the eigendecomposition of . Then there exists an orthogonal
T such that (44*; M) T = VD. Hence,

t 4
T,( ‘élw )Z-I(Aaﬁ%; M)T=DV'(VD2V')VD = I,
that is,

A4 =T or A'T1A=yt.
Q.E.D.
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Before turning to a comparison of such RCDs with the conventional practice
of factor analysis, we state a simple lemma which will be useful later.

Lemma. A is the regression pattern for predicting 5 from § iff A, = SAT is
the regression pattern for predictinz n* = Sy from ¢* = T-1¢ for all non-
singular S, T.

Proof. The result is a direct consequence of (1.5) applied to n*, £ noting that
cov (7%, %) = Scov(n, §) T

3. FALSIFIABILITY AND SOME IMPLICATIONS FOR ‘FACTOR SCORE ESTIMATION’

A comparison between factor analysis and RCDs, as developed so far, might
seem to favor the latter: at the covariance level there are a number of similarities,
and at the random variable level the main difference is that regression components
are uniquely defined linear combinations of the manifest variables, whereas the
factors of the factor model are not. | Aside from all theory, it should also be
clear that RCDs are more efficient ¢computationally, because, in general, they
do not require estimation of the communalities of the factor model. In factor
analysis, lengthy iterative procedures are necessary to obtain optimal estimates
for these variance parameters of the model. One of the better understood and
currently popular estimation methods is the maximum likelihood procedure
developed by Lawley (1940) and perfected by Howe (1955), Joreskog (1967) and
others. Maximum likelihood methods require a prior guess for m, the number
of common factors. Upon convergence, this hypothesis can be tested statistically.
If it has to be rejected for the data on hand, the iterative process has to be
repeated for a revised m. Schénemann & Wang (1972) found that the number
of common factors m so arrived at is usually larger than had been assumed or
found practical in previous analyses of the same data by earlier, technically
inferior extraction methods. In other words, if treated statistically, the factor
model does not fit as often and as well as had been claimed in the days when no
rigorous methods for testing the fit were available. Schénemann & Wang also
found that simply raising 7 does not resolve all problems in practical applications
of the factor model because it often invites new troubles. As the number of
factors is raised in an effort to improve the statistical fit, one usually finds that
the identifiability for some of the variance parameters in U?is lost. This hazard,
though well known in theory (e.g. Wilson, 1939; Anderson & Rubin, 1956),
has not been of any greater concern to most practitioners of factor analysis than
the equally distressing factor indeterminacy issue, and most ‘classical’ texts on
factor analysis ignore both.

When compared to component analysis, factor analysis appears to have many
disadvantages. Yet, proponents of the factor model have repeatedly characterized
component analysis as a mere ‘approximation to the factor model’. This view
is based in large part on the fact that most versions of component analysis which
have been investigated are tautological, whereas the factor model is, at least in
principle, falsifiable. This aspect of factor analysis was quite explicit in
Spearman’s days, but it became more and more remote in the Thurstone era.
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It has now re-emerged through the development of statistical algorithms for
testing some of the hypotheses implied by the factor model. We now have some
well-understood and computationally manageable algorithms for fitting the factor
model statistically. This, it has been said, is an undeniable advantage over any
form of component analysis, which is simply a tautological description of the
data.

This fairly widespread belief is only half true, as we shall now show: it is
true that the factor model, by definition, is falsifiable at the covariance level, for
any fixed m (<p—1). It is also true that many forms of component analysis,
as usually treated, are tautological. But it is not true that this is a critical
difference between both methods. The factor model becomes falsifiable by
specifying a diagonal variance—covariance matrix for the unique factors, i.e. by
specifying one of the parameters of the model partially. There is no obvious
reason why a similar specification could not also be imposed on component
decompositions, thereby rendering them falsifiable. The question of whether
the unobserved (‘latent’) random variables are indeterminate or not is unrelated
to this falsifiability issue. As we shall show, if one does not wish to entertain a
model with indeterminate random variables, for the description of data, then
one can always replace it by an empirically equivalent regression component
model with unambiguously defined random variables. To establish this result
we need:

Theorem 4. = = A* A*' + U2, with A* of full column rank m and U2 positive
definite, diagonal, iff there exists a diagonal, positive definite matrix U such that
S* = U-13ZU-! = AA'+E, where AA’ has latent roots b,2>b,2>...>b,2> 1,
and E=E = E?% EA = ¢.

Proof. Since A* has full column rank m, X = A* A* +U? implies that
S* = U-L1ZU -1 = (U1 4%)(A* U1)+1 has p—m roots equal to unity, and m
roots b2, ..., b,,2 > 1. If the eigendecomposition of X* is 2* = L, Dy,,> L,"+ Ly Ly,
where the m largest roots are in Dy,2, and (L,, L;) contains the orthogonalized
eigenvectors, then we can set A = L, Dy, E = L, L/, to obtain

X*=U1ZUt = AA'+E,
with E=E’' = E2,
Conversely, if a positive definite diagonal matrix U exists such that
2 = U1ZU = AA'+E,

and E satisfies E = E' = E?, then we can write E = L, L,’, for some L, which
satisfies Ly Ly =1, ,,. EA=L,LyA=¢ then implies that we can write
A =L, T for some nonsingular m xm matrix T, where L, is the orthogonal
complement of L,, and an orthogonal basis for the column space of 4, so that
L/'Ly=¢, Ly’L; =1,. Thus, we have

%= AA'+E=L,TT' L/ +LyLy = L(TT'~I)L/+L L/ +LyL, = BB'+1.

B = L,(TT’ —1)* exists and is of full column rank m since all nonzero roots of
AA = L, TT’L, are larger than unity. Hence, £ = UX*U = 4* 4* + U?,
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where A* = UB of full column rank m, and U? is diagonal, positive definite.
Q.E.D.

Theorem 4 implies:

Theorem 5. The factor model (1.1)~(1.2) fits a given 7 iff a regression compo-
nent decomposition (1.3)-(1.5) fits the rescaled variables

p*=U"1y (3.1)

for some positive definite diagonal matrix U so that the p —m nonzero eigenvalues
of the residual variance—covariance matrix

E=var(e), fore=xq*—A¢ (3.2)

are all equal to unity, or, equivalently, iff a RCD n = 4,{+¢, fits = Un*
where ¢, = Ue for ¢ in (3.2).

Proof. If the factor model fits, & = A4* A* 4+ U2 Hence, by Theorem 4,
S* = U1XU-!= AA'+E, with E =E’ = E? By Theorem 1, (1.3), (1.4),
(2.3) suffice to characterize a regression component decomposition for some B
that satisfies B’ 4 = I. Interpreting 4 in * = AA’+ E as the regression pattern
for £ = B’ y* with var (¢) = ¢ = I, and E as var (&) for ¢ = (I— AB")n* uniquely
defines a regression decomposition on the rescaled variables n* = U~1y, for
B = 3*-1 4(AZ*-1 A)~1 by (2.2). The p—m nonzero roots of var(¢) are unity,
since E = E’ = E2,

Conversely, if a diagonal positive definite matrix U exists such that the residual
variance—covariance matrix satisfies E = E’ = E?2, then, by Theorem 4,
S = UZ*U must be of the form T = A* A* +U? Hence the factor model
(1.1), (1.2) fits for same £*, ¢* with var (é*) = ¢ = [,,. Finally, if (3.2) is a RCD
for (3.1), then v = (UA) ¢+ (Us) = A, €+ &, is a RCD for u, and conversely, by
Lemma 1. Q.E.D.

The point is simply that the factor model can only be falsified at the variance—
covariance level, not at the random variable level. The implied structure of the
random variables of the factor model is empirically empty. It can be replaced,
if desired, by an equally empirically empty component structure which has
none of the logical problems of factor scores and their ‘estimates’.

The component model in Theorem 5 differs from a tautological regression
decomposition in terms of the added stipulations (3.1) and (3.2). The falsifiable
hypothesis is that a suitably chosen rescaling of the observed variables y; can
be found which yields an idempotent variance—covariance matrix for the residuals
in &. This hypothesis need not be true—indeed, for small m, it is probably false
in most cases. The factor model holds if, and only if, this hypothesis is true.

Some statistical treatments of principal components analysis have recommended
that component extraction be halted when the eigenvalues become indistin-
guishable (e.g. Kendall, 1961). The regression component decomposition of
Theorem 5 follows the spirit of these recommendations, because the indistin-
guishable components are, in effect, discarded as (correlated) error contained in &.

It is the diagonality condition of the factor model, var(e¥) = U? = diagonal
which yields its falsifiability. The same condition also yields falsifiability for the
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component decomposition (1.3)-(1.5), (3.1), (3.2). The full rank condition
(1.2a), on the other hand, yields the indeterminacy of the random variables of
the factor model. This indeterminacy remains even if the diagonality condition
is weakened—so long as the full rank condition is retained. In short, falsifiability
and factor indeterminacy are unrelated. We can retain one and eliminate the
other.

Hence, any time the factor model with 7 common factors fits 1, there is also a
regression component decomposition with m components which fits %. In
using this RCD, one defines the latent variables in ¢ uniquely as known, readily
interpretable linear combinations of #. These latent variables, unlike their
common factor counterparts, are determinate. Moreover, as shown earlier, they
satisfy a number of the variance-covariance properties of the factor model, i.e.
(2.1), (2.3), (2.4), (2.5). The RCD accomplishes the essential purpose of factor
analysis with less computational effort, and a considerable gain in conceptual
clarity. To appreciate this more fully, let us compare the properties of such an
RCD with the analogous procedure in factor analysis, i.e. the ‘estimation’ of
factor scores via the regression method. These ‘regression estimates’ are simply
components in the sense of definition 1 computed as

g = Y* A* Ty, (3.3)
For convenience, and without loss of generality, we will assume that
var (£*) =y¢* = I, (3.3a)

We will temporarily ignore the semantic problems inherent in the use of the
term ‘estimates’, and simply examine whether they satisfy the various constraints
of the factor model (1.1)-(1.2a). The regression pattern for the regression
‘estimates’ is

A¥* = cov (n, E*)var (&%) = A*(A* T-1A*%)1 £ A*, 34
Defining the residual &* tautologically as

£ = n— A% E* (3.5)

one finds
var (6*) = U2Z-1U%+# U? = diagonal = var (¢*), (3.6)

and also
cov(E*,8%) = A Z-1U2#£6 = cov (£¥, 6%), (3.7)
var (8%) = A'* Z1A* £ I, = var (£*). (3.8)

In short, the ‘regression estimates’ have none of the properties of the ‘factors’
which they are supposedly estimating. The regression components, on the other
hand, satisfy several of the covariance properties of the factors, namely (2.1),
(2.3), (2.4), (2.5), and they satisfy all the properties of the empirically
indistinguishable regression compenent model.
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4. CONCLUSIONS

To avoid misunderstanding, we emphasize that we do not recommend the use
of the falsifiable component model in Theorem 5 in practical work. We believe
that factor analysis has achieved its erstwhile popularity not because of the
properties of the factor model, but, rather, in spite of them. The status of factor
analysis as a falsifiable scientific hypothesis has rarely been taken seriously since
Thurstone popularized multiple factor analysis as a general research tool. It
has not been taken seriously as a model by those theoreticians who urged its
widespread use, and went to great lengths to ignore the theoretical problems
attending to this model. It has not been taken seriously by most users, who were
generally uninformed about the defects of the factor model. They were left with
the erroneous impression that the factor model ‘always worked’, for a conveniently
small number of common factors. They were told to ‘estimate factor scores’
because ‘factor scores cannot be computed, they can only be estimated’. This
myth was perpetuated through decades, although it is obviously false, as could
have been known since Wilson (1928).

In using ‘factor score estimates’ the user was in effect employing components,
albeit components which were derived in an illogical and cumbersome way,
and which, as we have shown, share none of the properties of the random variables
defined by the model.

As we have demonstrated, there is no need for factor theory at all. Whether
factor analysis is used solely as a data reduction technique, or whether it is taken
seriously as a model for the variance—covariance matrix of the observed variables,
it can always be replaced by regression component analysis with no loss in
flexibility and potential for falsifiability, and with considerable gain in conceptual
clarity and computational efficiency.

We gratefully acknowledge the support by NIMH (Small Grant 1RO3MH25680) and
by Purdue University (David Ross Fellowship PRF 8556).
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APPENDIX
Proof of Theorem 1

Since necessity has already been shown where it was not immediately obvious,
we need to show sufficiency to establish the equivalence. For the sake of brevity,
we shall write (2.k): k=1,2,...,8 to mean [(1.3),(1.4) (2.k)]=[(1.3).(1.4),
(1.5)].

(2.1): (1.3)=cov(n, §) = ZB. (1.4), (2.1)=cov(n, £) = Ay. Hence 4 = ZBy~L.

(2.2): (1.3), (22)=4 =B'SB=(A'S-14)". Substitution in (2.2) gives
A =SBy,

(2.3): (L.3),(1.4),(2.3)=>B’c = ¢. Hence, from (2.3), var(¢) B = ZB— A = ¢
or A = LBy,

(2.4): (14), 24)=cov (y, n—AE) = var (p—Aé)<>X—cov (y, §) A’ = Z—
cov (n, §) A'—A cov (&, n)+ ApA’, or A cov (&) = ApA’. (1.3=
AB’'YZ = AJA’. Rank (4) = m=A = ZBy™.

(2.5): (1.3),(2.5)=XBA' = AyA. Rank (4) = m=A4 = ZBy.

(2.6): (1.3),(1.4)=var(¢) = X—AB'X-XBA'+ AB'EBA’. (2.6)=
ZB(B'EB)'B'X—AB'Z—%XBA'+ A(B'EB) A’ = ¢
[EB(B'EB)'—A](B'ZB)[XB(B'EB)1—A] = ¢. s = B'EB, ns.
=>A =3By

(2.7): (2.72)=>A¢ = Pcov(n, ). (1.3)=A) = PEB. (2.7a)=A = B, hence
A = ZBJt. Note that the idempotency of P is not needed.

(2.8): (14),(2.8)=n—A& =On=>Z—Acov({,n) = Q0Z. (1.3)=E2—-A4AB'% =
QXZ=XB—AB'YB = QXB. (2.8a)=XB=A). Hence A=ZBy
Again, the idempotency of Q is not needed.





